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Abstract. We propose a SU(2/ 1) local internal supersymmetry model with positive-definite 
kinetic terms for the gauge fields. The model is constructed by introducing additional 
scalar fields, according to the approach of the non-linear realisation of internal supersym- 
metry. The Lagrangian of the gauge fields is then given by using a scalar-field-dependent 
metric instead of the Killing metric. The system consisting of the gauge fields and scalar 
fields can be understood as a non-linear U model coupled to gauge fields. The relation of 
our model to the massive Yang-Mills model is also discussed. 

1. Introduction 

Over the past ten years, local internal supersymmetry models (gauge theories of internal 
supersymmetry) based on the supergroup SU(2/ 1) have been investigated repeatedly 
by several authors in order to construct a unified electroweak theory with only one 
coupling constant [ 1-61. 

The SU(2/1) model has the following interesting features. (a) The generators of 
SU(2/1), normalised by traces, fix the Weinberg angle to O W = 3 O o ,  which is close to 
the present experimental value. (b) In addition to the triplet (fundamental) representa- 
tion fit for the assignment of lepton states (v:, eJe;), there exists the quartet rep- 
resentation of SU(2/1) which fits the assignment of quark states 
( ut’3, d i l l 3 /  ~ ? ~ / d i ” ~ ) .  (c) Goldstone-Higgs-like scalar fields and their interactions 
can be derived from SU(2/ 1) electroweak theories realised in a higher-dimensional 
spacetime. Extensions of the SU(2/ 1) electroweak theories to those including the 
strong interaction have been made by Taylor, Dondi and Jarvis and Ne’eman and 
Sternberg based on the supergroup SU(5/1) [7-91. Some representations of SU(5/1) 
successfully reproduce the correct quantum numbers of leptons and quarks in different 
assignments from the conventional SU(5) model. Furthermore, to deal with the 
generations, an extended model based on SU(7/1) has also been investigated by 
Ne’eman and Thierry-Mieg [ 101. 

In spite of the attractive properties mentioned above, the SU(2/1) model has the 
following difficulties [ 111. First, since SU(2/ 1) is a Lie supergroup, the parameters 
for transformations caused by the odd generators, the generators of SU(2/1) other 
than those of subgroup SU(2) x U( l) ,  are Grassmann numbers. This means that gauge 
fields associated with the odd generators are anticommuting vector fields with the 
wrong spin statistics. Correspondingly, the SU(2) doublet (v:, e i )  and the SU(2) 
singlet e ,  assigned to the SU(2/1) triplet should have statistics opposite to each other, 
since anticommuting gauge fields propagate between (v:, eL) and e , .  Hence, if ( v:, e ; )  
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are the left-handed components of the ordinary neutrino and the ordinary electron, 
then the singlet e, must have the wrong spin statistics. Further, unlike the standard 
model, e, has left chirality, since SU(2/1) commutes with the Lorentz group. 

The second difficulty is that the Killing metric of SU(2/1) is not positive-definite 
for SU(2) x U( l) ,  owing to the nature of the supertrace in the definition of the Killing 
metric. Therefore, the kinetic terms of SU(2) gauge fields and that of the U ( l )  gauge 
field have signs opposite to each other, and hence negative energies arise. Similar 
difficulties also arise in local internal supersymmetry models based on the supergroup 
SU(m/n)  [12]. 

The same difficulty (the indefinite metric problem) is encountered when we deal 
with gauge theories of internal symmetry based on a non-compact Lie group such as 
SL( n, C). In non-compact Lie groups, the Killing metric is also non-positive-definite; 
however, it is known that this difficulty can be avoided by replacing the Killing metric 
K A B  with a positive-definite metric G A B ( 4 ) ,  which is defined with scalar fields intro- 
duced additionally [13, 141. 

The purpose of this paper is to construct a local internal supersymmetry model in 
which the indefinite metric problem is avoided with the help of additional scalar fields. 

In the next section, we discuss the non-linear realisation of a Lie supergroup, G, 
with a subgroup, H, and introduce the scalar fields 4" as variables which parametrise 
the coset (super) space G/H [lS].  There, we construct the Lagrangian for the fields 
4" invariant under global G transformations [16]. In 0 3, we discuss the local G 
transformations and construct the Lagrangian of a system consisting of a gauge field 
and scalar fields. In 0 4, we study the total Lagrangian in the unitary gauge and show 
that the Lagrangian of scalar fields is then reduced to the mass terms of gauge fields. 
In 0 5 ,  we apply this method to the SU(2/1) model and show that the positive-definite 
kinetic terms of gauge fields and the SU(2/1) symmetry are properly ordered. We also 
evaluate the Weinberg angle. Section 6 is devoted to a summary and discussion of 
our results. The appendix contains some geometrical formulae which are useful in 
this paper. 

2. Non-linear realisation and global transformations 

Any element g of a unitary supergroup G can be written as exp(iX) by using an 
element X of the Lie superalgebra of G. In terms of the generators (the basis of the 
Lie superalgebra) {TA} ( A  = 1,2,  . . . , r ;  r = dim G) of G, the X can be represented as 
X = XATA = (-l)ATAXA. Here, XA are parameters (ordinary real numbers or real 
Grassmann numbers) and the exponent A in (-l)A is the 'Grassmann parity' defined 
as 0 (1) for ordinary (Grassmann) numbers. From the unitarity of G, the generators 
TA satisfy the extended Hermiticity condition: TAt = (-l)ATA t. The structure of G is 
determined by the supercommutation relation 

where f A B c  are structure constants. The generators {TA} fall into two groups: the set 
{ T,} (a = 1,2 , .  . . , m ;  m =dim H), which generates the subgroup H of G, and the 

T The Hermitian conjugate (' operation) and the complex conjugate (* operation) for the product of the 
elements of the Lie superalgebra are defined so that ( X U ) ' =  Y t X t ,  ( X A T A ) +  = TAtXA* and ( X A Y B ) *  = 
YB*XA*. 
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remainder { T,} ( a  = m + 1, . . . , I )  associated with the coset superspace (homogeneous 
superspace) G/H [17, 181. In this paper we restrict our discussion to the reductive 
coset superspace G/H,  i.e. to the case of fabY = 0. 

Let us now consider the coset superspace G/H which is defined as the set of the 
(left) coset gH = { g h  I V h  E H} ( g  E G). From the definition, each of the cosets have no 
element in common, i.e. the cosets are disjoint?. Then we can introduce the coordinates 

on G / H  which label the cosets in a one-to-one way. In this paper we treat the 
coordinates {4 , }  as r - m  scalar fields defined in the Minkowski spacetime. From 
each coset we choose a particular group element U( 4 )  ( EG) called the 'coset representa- 
tive'. Further, we assume that the coset representatives U(+) constitute a smooth 
function U = u ( 4 )  of (4") .  All elements of the coset can be represented in the form 
u ( 4 ) h  ( h  E H). Since u ( 4 )  is an element of G, the left product of u(4) by an arbitrary 
element g ( E  G) lies in G, and hence the resultant element is in a coset specified by 
a coordinate 

g 4 4 ( x ) )  = 4 4 ' ( X ) ) h ( 4 ( X L  g ) .  (2.2) 
In general, h is a function of the scalar fields + " ( x )  and g. The explicit form of h is 
determined by (2.2), depending on the choice of elements ~ ( 4 ) .  The transformation 
property + " ( x ) +  4 ' " ( x )  of the scalar fields under the action of G is also determined 
by (2.2). The scalar fields + " ( x )  transform non-linearly under G, while, under the 
subgroup H, they transform linearly. 

Considering the above properties of the coset superspace, we first construct the 
Lagrangian of the + " ( x )  which has the invariance under global G transformations. 
For this purpose, let us introduce the vector e , ( + )  ( p  = 0,1 ,2 ,3)  defined by 

e, ( 4 ( x )  1 = ( 1 / i K 1 U ( 4 ( x  1) -'a I*. U ( 4 (x 1) (2.3) 
where K is a dimensionless constant and a, = d/ax'". Since v ( ~ ( x ) ) - ' v ( + ( x +  a x ) )  
( = 1 + 8 x F u ( 4 ( x ) ) - ' d , u ( c $ ( x ) ) )  lies in G, e , ( 4 )  belongs to the Lie superalgebra of G. 
From (2.2), e , ( 4 )  transforms under global G transformations as 

e, ( 4 )  + e, ( 4 ' )  = he, ( 4 ) h - ' +  (l/iK)ha,h-'. (2.4) 
We note that, although g is independent of x,  h is dependent on x through the rj"(x); 
hence, there arises an inhomogeneous term in the transformation law. Thus, as in 
ordinary gauge theory, the invariant Lagrangian can be constructed by introducing the 
gauge field which cancels the inhomogeneous term in (2.4). We define the covariant 
derivative of u ( 4 )  for the (local) H transformations by 

v,4 4 )  = a,44) - i K U ( 4  10, ( X I  (2.5) 
where Q, is the gauge field for H transformations, i.e. the element of the Lie super- 
algebra of H [16]. Hence, it can be expanded in terms of {T,} as Q , ( x ) =  Q E ( x ) T , .  
We require that V , u ( 4 )  has the same transformation property as U(+) under the left 
product by g ( E G), i.e. 

g ( V , 4 4 ) )  = ( V L 4 4 ' ) ) h ( 4 ,  g )  (2.6) 

Q,+ QL= hQph-'+(1/iK)ha,h-'. (2.7) 

from which the transformation of Q, must be 

t The Lie supergroup G has the structure of the principal fibre bundle with the base space G/H,  the typical 
fibre H and the projective map n :  G +  G / H  defined by n ( g )  = gH. Furthermore, then, the coset representa- 
tives o =  U(+) define a 'section' on the bundle space G [13]. 
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then it transforms homogeneously under the global G transformation as 

Now, let us introduce a Hermitian constant matrix q which is invariant under the 
action of the subgroup H, i.e. 

h - ' q h  = q for all h E H (2.10a) 

or equivalently 

1% To1 = 0. (2.10b) 

Further, the {T,} and {To} are assumed to be orthogonal to each other in such a sense 
that the H-invariant metric I A B  defined by 

I A B  =a(-l)B[str( T A q T B )  + str( T B q T A ) ]  

( = ( - 1 ) A + B + A B  I B A ) )  (2.11) 

satisfies I,, = O .  The simplest example of q is the identity element in G; in this case, 
ZAB is reduced to the Killing metric: K A B  ( -l)B str( T A T B ) .  For certain kinds of G 
and H, however, one can find a matrix q other than the identity element in G. 

Using p ,  ( 4 )  and q, we can set up the Lagrangian of the + " ( x )  in the following form: 

P W ( + ) = P , ~ ( ~ ) ~ A  (2.12) 1 2 A  
z+ ,Q=tp2  Str(Pv(4)qp'(4)) =Tp PY ( 4 ) I A B P y B ( 4 )  

where p is a constant with the dimension of mass. In consideration of (2.9) and 
( 2 . 1 0 ~ ) ,  the Lagrangian (2.12) is really invariant under the global G transformations. 
Now, we treat the gauge field 0, as an auxiliary field having no kinetic term; then, 
Q, can be expressed in terms of 4 " ( x )  by solving the constraint derived from the 
Lagrangian (2.12). This is done by decomposing e , ( + )  into the H part e ; ( + )  and the 
G / H  part e : ( + )  as (see (A10)) 

(2.13) e , ( + )  = e ; ( + )  + 4 4 )  

( 2 . 1 4 ~ )  

and 

e ; w =  e, '"'(4)T,  = ( ~ , 4 b ( x ~ ) e b ( c I ' ( + ) T , .  (2.146) 

Substituting (2.13) into (2.12) and using the equation of motion aLf+,,/aQE = 0 with 
the orthogonal condition I,, = 0, we have 

a, = e,(4J)  (2.15) 

from which (2.8) leads to 

P,(4) = et(4J). (2.16) 

After eliminating Q, the Lagrangian (2.12) becomes 

(2.17) 3 -1 2 1 2 '0) + -2 /L s t r ( e : ( 4 ) q e " ' ( 4 ) )  = T / L  (4)1abe"'b ' (4) .  
By using (2.14b), we can further rewrite (2.17) as 

2 6 -1 - 2 / L  2 a v 4 " ( X ) g a b ( + ) a Y 4 b ( X )  (2.18) 
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where 
b ( b + d )  ( c )  gab(+) = (-1) ea ( + ) I ~ d ~ b ( ~ ' ( + )  

( =  ( _ l ) , + b + U b  gbn(4)). (2.19) 
The 2'+ in (2.18) is a familiar form of the Lagrangian of the 'non-linear U model', in 
which the scalar fields parametrise some space (manifold) with a metric. 

We finally check the equivalence of the transformation property on both sides of 
(2.15) and (2.16). From the reductivity condition [ T,, Tb} = if,bcTc, hTah-' can be 
expanded in the basis {T,}. On the other side, hT,h-' and hd,h-' are expanded in 
the basis { Tm}. Therefore, substituting (2.13) into (2.4), we can decompose the transfor- 
mation behaviour (2.4) into two pieces: 

e;(+)+ e,(+') = he;(+)h-'+(l/iK)hd,h-' (2.20a) 

e:(+)+ e:(+') = hei(+)h- ' .  (2.20b) 
That is, e; and e: transform identically as Q, and p, respectively. 

3. Local transformations 

3.1. Lagrangian of scalar jields 

Next, let us consider the case where the transformations of the Lie supergroup G are 
spacetime dependent, i.e. the case of local G transformations. If an arbitrary element 
g of G has a spacetime dependence the transformation behaviour (2.4) of e,(+) will 
be modified so that 
e,(+) + e,(+') = he,(+)h-'+ (l/iK)[hd,h-'+ hv(+)-'(g-'a,g)v( + ) h - ' ] .  (3.1) 
In the transformation behaviour (3.1), the third term is the inhomogeneous term arising 
from the spacetime dependence of G transformations. To construct an invariant 
Lagrangian we therefore need two kinds of gauge fields: one is the (auxiliary) gauge 
field Q, with the transformation behaviour (2.7) and the other is the gauge field A, 
of local G transformations, by which the third term of (3.1) is cancelled. 

We now define the covariant derivative for G transformations: 

0, =d,+iqA,(x) = A p B ( x ) T B  (3.2) 
where q is a coupling constant. Then, the covariant derivative of v (  6) can be obtained 
by replacing the d, with the 0, in (2.5) as follows: 

9,4+) = D,v(+) - W 4 ) Q , ( x )  

( =  (V,+iqA,(x))v(+)). (3.3) 

(3.4) 

If we assume that under G transformations the gauge field A, transforms as 

9 ,u (  4) has the same transformation property as U( 4 )  with respect to the left product 
by g(x)  (EG). Thus, if we define 

A, + A: = gA,g-' + (l/iq)gd,g-' 

P , ( + )  = (1 / iK)4+)- '9 ,4+)  = E , ( + )  - 0, 

E,(4) = ( 1 / i ~ ) 4 + ) - ' 0 , 4 + )  = e,(+)+(q/K)v(+)-'A,v(+) 

(3.5) 

(3.6) 

with 

one can find that P, has the same transformation behaviour as p,, i.e. 
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where the covariant derivative of the 4 " ( x )  is defined by 

D,#J"(X) = d , 4 " ( x )  + qK-'APB(X)LB"(4). (3.11) 

Here we have used ( A l l )  and (A12). Substituting (3.10) into (3.8), the Lagrangian 
(3.8) becomes 

9 4 -1 - ZP 2 s t r ( C ( 4 )  7E 1) = tP2E,'"'( +)Iu& Y'b'(4 1 (3.12) 

(3.13) 

The T4 is nothing other than the Lagrangian of the non-linear U model coupled with 
a gauge field. As in the case of global G transformations, we can verify that E ,  and 
E:  transform identically as Q, and P,, respectively. 

= 1P2DY4 " ( x ) g a b  ( 4  ) D v4 ( X I .  

3.2. Lagrangian of the gauge field 

Let us construct a Lagrangian of the gauge field A,. From the covariant derivative 
(3.2), the field strength of the gauge field A, is defined by 

(3.14) F," = (l/iq)[D,, a 1  = J , A ,  -avA, + i d A , ,  AUI 

or, for the components, 

F,/ = d,A/ - d,APB + qA,CAuDfDCB FPy = F,,BTB. (3.15) 

From the transformation behaviour (3.4) we can show that 

(3.16) 

Then the usual form of the Lagrangian, invariant under the transformation (3.16), is 

-a str(F,,FFY) = - - $ F , , ~ K ~ ~ F ~ " ~  KAB = ( - l )B  str( TATB).  (3.17) 

However, if there exists a matrix 7 having the property (2.10) besides the unit 
matrix, then another form of the Lagrangian of A, becomes possible. Indeed, using 
the matrix 7 and the coset representatives U( 4), we can define the following Hermitian 
matrix: 

- 1  F,,, + FLY = . 

s(4)  = 44)744r1 (3.18) 
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to which, in view of (2.10a), one can verify the transformation behaviour 

s (d)  + 4 4 ' )  = g s ( 4 ) g - ' .  
Therefore, by using s(c$), we can set up another type of Lagrangian [13] as 

2 ' A  = -a str( F,,s( 4 )  F,") = -aF,/GAB( 4 )  F'lUB 

where 

GAB(+) =t(-l)B[str(TAs(4)TB)+(-1)AB str(TBs('#')TAl 

( =  (_l)A+B+AB G B A (  4 1) * 
The metric GAB(4) transforms, under the G transformation, as 

GAB(4)+ GAB(4')=(-1)B(B+D)D A ( g - ' ) G C D ( 4 ) D B D ( g - ' )  

and is related to I,, by 

GAB(4) = ( - l )B(B+D)D A ( U ( 4 I-' ICDDBD ( 21 ( 4 I-' * 
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(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Here, DAB(v-')  is the matrix corresponding to 0-l in the adjoint representation of G 
(see (A13)). The Lagrangian (3.20) is invariant under local G transformations. If we 
choose the unit matrix as 7, then obviously s ( 4 )  = 1; the Lagrangian (3.20) is reduced 
to the Lagrangian in (3.17). 

Therefore, the total Lagrangian invariant under the local G transformation should 
be 

(3.24) 

where 2'+ is the Lagrangian defined in (3.12) or (3.13). We note that the H-invariant 
metric I A B  may be positive-definite, unlike the Killing metric K A B ,  and so the kinetic 
term of the gauge field in the Lagrangian (3.24) may also be positive-definite. 

2tot = 2A + 2'+ 

4. Unitary gauge 

We now discuss a specific expression of the Lagrangian obtained by a special G 
transformation: g o ( x ) =  v ( + ( x ) ) - ' .  Let us suppose that g o ( x )  puts { 4 ' }  in the place 
of ( 4 ; )  according to (2.2): g o ( x ) v ( 4 )  = v(4,)h(+,  g o )  = 1. Since the unit element, 1, 
lies in H, ~ ( 4 , )  is a coset representative of the coset IH, and so we can put ~ ( 4 , )  = 
h ( 4 ,  go) = 1 without loss of generality. Therefore, the scalar fields 4"(x)  are 'gauged 
away' out of the Lagrangian by the following g o ( x )  transformations: 

A, +A, = 4 4 ) - ' A , m 4 +  W q ) 4 4 ) - ' a , 4 4 )  (4.1) 

E p ( 4 ) + ( q / K ) A ,  e , ( 4 )  + 0 (4.2) 

F,"+ Fwv= U ( ~ ) - ' F , ~ V ( ~ )  =a,A,-aJ,+iq[A,, AV] (4.3) 

s ( 4 ) +  '7 (4.4) 

 GAB(^) + IAB. (4.5) 

and 

Then, the total Lagrangian ZtOt is reduced to the following form: 

L2',,, = -a str(F,;,@wLY) + im' str(AL + i w + )  = AFbTb 

m = ( ( l 1 K ) I - l  (4.6) = -- :F,/IABFwYB +im2A,aIubAwb 
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which should be compared with the Lagrangian of massive Yang-Mills fields in the 
'unitary gauge'. We note that the Lagrangian Lf4 in (3.12) has been reduced to the 
mass terms for the gauge fields A: (G/H part), while the other gauge fields (H 
part) still remain massless. The longitudinal components of the Proca-type massive 
fields 

Now, in the Lagrangian L?',,, , the underlying symmetry of the supergroup G looks 
like breaking down to that of the subgroup H. However, since gtOt is a form of Lftot 
in a specific gauge, the symmetry of G in the Lagranjian (4.6) is not broken in truth. 
Indeed, from (2.2) and (3.4), one can find that A, and fiFV transform under G 
transformations, respectively, as 

are supplied by the scalar fields 4". 

A, +A; = hA,h-'+(l/iq)ha,h-' (4.7) 

FWv -j Fkv = hFWL,h-'. 

Ai + A;+ = hALh-' 

(4.8) 

In particular, the G / H  part Ai of 2, transforms homogeneously as 

(4.9) 

and so, by virtue of (2.10a), the full symmetry of the Lagrangian under G transforma- 
tions still survives in Ztot. 

Finally, we stress the following difference between our model and the ordinary 
Higgs models: in our model (i) Higgs scalar fields disappear in the unitary gauge and 
(ii) there are no potential terms which generate spontaneous symmetry breaking. 

* 

5. The SU(2/1) model 

Until now, the Lie supergroup G and its subgroup H have not been limited to specific 
supergroups. In this section we take the Lie supergroup SU(2/1) and the Lie group 
SU(2)xU(1)  as G and H respectively. Then, the coset superspace G / H  
(=SU(2/1)/SU(2) x U(1)) turns out to be the pure fermionic space parametrised by 
Grassmann numbers. One can also verify that this coset space is reductive. 

The generators of SU(2/ 1 )  consist of { T,} ( a  = 1,2,3,4)  generators of the subgroup 
SU(2) x U( l ) ,  and { T,} ( a  = 5 , 6 , 7 , 8 )  generators mixing SU(2) doublet and SU(2) 
singlet. In the fundamental representation those Hermitian generators { t A }  ( t ,  - 
T,, t, -iTa) are (disregarding the normalisation and writing cri as the Pauli matrix 
where i = 1,2,3)  given by: 

t 5 = [  I :I 
1 0  

t 7 = [ 4 ]  

f'j = [+] 
&=[ I"] 
&=[ I'] 
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to which one can verify the supertraceless condition: str( f A )  = 0 T. The diagonal 
matrices r3 and t4 reproduce the respective quantum numbers of the weak isospin and 
the weak hypercharge for (v:, e;/ e;). Since str( f : )  > 0 and str( r:) < 0, the Killing 
metric of SU(2) x U(l )  is not positive-definite: this is the difficulty mentioned in the 
introduction. In what follows, however, we shall show that the indefiniteness property 
of the Killing metric is not a serious problem in the system described by the Lagrangian 
(3.24). 

In the present case, the matrix 7 that has the properties (2.10) can be written in 
the form 

where A is a real constant. From (2.11), we can find that I lI-str(t i7ri)>0, and 
144 - str( f47t4) = 2 - 4A. Therefore, the SU(2) x U( 1) part of the metric IAs has definite 
sign provided A <f. Taking the condition on A and the property TA’ = ( - l )ATA into 
account, we here define the normalised generators {TA} as 

i r  1 f o r - l < h < i  .=( 
0 forA<- l .  To = 

+ A ) 1 / 2 

(5.3) 

Then, IAB has the following form: 

In this case, the Lagrangian gtot in (4.6) becomes 

& = -a(Fp,’FF’”’+ F F , 4 F ’ ” u 4 ) + i ( - 1 ) r ( f F F Y S F F Y 6 _  m ’ A , ’ A F L “ )  

+ i (  -1)r($ 2 Y V  7 1 5 F Y S  - m’A,7A.~)). ( 5 . 5 )  

Therefore, the kinetic terms for SU(2) and U(1) gauge fields have the same sign, and 
the anticommuting gauge fields become massive. The Lagrangian with positive-definite 
kinetic terms in an arbitrary gauge can also be obtained by using (3.23). 

We next evaluate the Weinberg angle Ow from the form of interaction between 
leptons and gauge fields. As mentioned in the introduction, the ordinary left-handed 
doublet (v:, e;) and the ordinary right-handed singlet e, cannot be assigned to the 
triplet representation of SU(2/1). Thus, in this paper, we regard (v:, e;) and e, as 
physicalcomponentsofapairofSU(2/1) triplets: (v:, e J ( e ; ) F )  and((v:)g, (e;)g/e,) 
[2,3,5]. Here, (e;)F and ((v:):, (e;):) are left-handed and right-handed bosonic 
spinor fields with wrong spin statistics respectively. 

P The supertrace is defined by str([Al;]) = tr A - tr B. 
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Taking account of the gauge invariance, the Lagrangian for the SU(2/1) triplets is 
given by 

where 

and D, is the covariant derivative defined in (3.2). The interaction terms of q k  with 
A i  and A; are 

c 99k(Yf iA/33+ yfiA,4T4Wk 
k=L,R  

+(ghost terms). (5.7) 

( 5 . 8 )  

Comparing (5.7) with those in the Weinberg-Salam model 

t g [  J L ? ” ~ A , ~ U ~  (CIL - ( g ’ / g )  ( $LY~B,$L + ~ J R Y ~ B ~ $ R ) I  g = a q  
we have the Weinberg angle 

g’ 1 
tan O w = - =  

g (1-2A)”’ (5.9) 

where g and g’ are the coupling constants of SU(2) and U( l )  respectively. 
We note here that the same Weinberg angle Ow as (5.9) can also be obtained in 

the quartet representation, in which the quantum numbers of the weak isospin and 
weak hypercharge for the quark states ( ut’3, d ; 1 r 3 / ~ 2 d 3 / d i 1 r 3 )  can be reproduced. 
Indeed, the generators T3 and T4 in that representation are, respectively, given by 

and (5.10) 

quartet - 1 [ -2b+1 - 2 b + l I  

- 2 b ]  
T4 - [2( 1 - 2A)]1’2 -2b+2 

where b is a real constant, and so the generators (5.10) with b =$  give the weak isospin 
and weak hypercharge for such quark states correctly. If we assign the quark states 
to the quartet representation of SU(2/1) in practice, it is necessary to prepare a pair 
of SU(2/1) quartets with statistics opposite to each other, as in the case of leptons. 
Then, from the interaction terms of quarks with gauge fields, the Weinberg angle is 
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angle is determined again as (5.9) [2]. It should also be noticed that the quartet 
representation (5.10) with the value b =$, b = 1 and b = 0 reproduce the weak isospin 
and weak hypercharge for the antiquark states (a?', a,213/!6L/3/ i iL2i3), the lepton 
states ( uzL,  e:/  &/e ; )  and the antilepton states (e:, &/e:/ FzL) respectively [9]. In 
each choice of b we can obviously obtain the same value of the Weinberg angle Ow.  

In our model the Weinberg angle is not predictable, owing to the undetermined 
real constant A (<;). Further, the case A = -1, corresponding to Ow = 30°, the theoretical 
value obtained in the original papers [ l ,  21, is not acceptable in our model, as can be 
seen from the normalisation (5.3). 

6. Summary and discussion 

We have constructed a new type of Lagrangian LEA for the gauge field A, of a local 
internal supersymmetry with the help of the metric G A B ( 4 ) ,  which is a function of 
scalar fields d"(x)  and plays a similar role of the Killing metric KAB.  The total 
Lagrangian Ttot is obtained by adding the Lagrangian 2+ of the scalar fields to 2A. 

The Lagrangian z,,, is essentially the same as that of the non-linear U model 
coupled to the gauge field. Especially for H = (1) and 7 = 1, the Lagrangian LEtot is 
reduced to the Lagrangian of the massive Yang-Mills model, which was investigated 
in [19]. Further, in a specific guage (the unitary gauge), the G/H part of the gauge 
field A, becomes the Proca field by introducing the freedom of the scalar fields #a, 
while the H part of A, still remains massless in this gauge. 

Using the method of § 3, we have succeeded in getting a SU(2/1)-invariant 
Lagrangian with positive-definite kinetic terms for the gauge fields. In our choice of 
the subgroup H = SU(2) x U( l), the anticommuting gauge fields (ghost fields) can 
acquire a mass, m. This means that, for a sufficiently large m, the full local symmetry 
described by SU(2/1) may be hidden in the low-energy region [20] in spite of the 
presence of the symmetry in the formalism?.. 

The Weinberg angle has been evaluated from the interaction terms of gauge fields 
with leptons and quarks. Then, in our model, the Weinberg angle is obtained, depending 
on a constant A (<$) in the form tan O w =  1/(1-2A)"*; although SU(2/1) is a simple 
supergroup, the Weinberg angle is not determined uniquely. In our model, we expect 
that A (i.e. e,) will be fixed by other reasons. 

In addition, in our formalism, there still remains the problem of the ghosts, which 
spoil the spin-statistics relation. We leave this problem for future work. 

As for the case of the local internal supersymmetry model based on SU(m/n)  
( m  3 n )  [21] we point out the following: if we choose the maximum bosonic subgroup 
SU(m) x SU(n) x U(1) (SU(m) x U ( l )  if m 3 2 ,  n = 1 and U ( l )  if m = n = 1) as H, we 
can take the following diagonal matrix for 7 with the properties (2.10): 

r I  I 1 

where I,,, (I,,) is a m x m ( n  x n )  unit matrix, and A is a real constant. Then, the 
Lagrangian with positive-definite kinetic terms for the gauge fields can be derived on 

t If we choose the Lie group U ( l ) ,  instead of SU(2)x U(1), as the subgroup H, the three ordinary gauge 
fields become massive in addition to the four anticommuting gauge fields. Thus, we may give mass to the 
W and Z bosons within the framework of this paper. 
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the condition that A < l / m  (for n = l ) ,  A < 0 (for n 3 2 ) .  In this choice of subgroup, 
the anticommuting gauge fields become massive. 

We finally comment on the high-energy behaviour of the propagator of the gauge 
fields. The Feynman propagator for the massive gauge fields A," (the G / H  part) can 
be derived from the quadratic part (the free part) of the Lagrangian (3.24) with the 
gauge fixing terms in the following form [19]: 

where I a b  is the inverse of l a b  and a is a gauge parameter. It should be noticed that, 
unlike the propagator of the Proca field, the propagator of A," has the same high-energy 
behaviour as that of the massless gauge fields belonging to the H part. Therefore, in 
the SU( m /  n )  model, we may expect that the massive anticommuting gauge fields play 
the role of the 'regulators' for the ordinary massless gauge fields. 
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Appendix 

We here discuss a number of formulae needed for an understanding of the coset 
superspace G / H  parametrised by { 4 " }  (c,b"4b = ( - 1 ) " b ~ b 4 " )  [17, 181. As seen from 
(2.2) the coset representatives v ( 4 )  transform under the action of G according to 

4 4 ) +  4 4 ' )  = gv(4)h(4 ,  g1-l. (A1 1 
Now, let us consider the infinitesimal G transformations 

g=l - iqEATA 

where the are infinitesimal parameters which depend on ( x ~ )  for the local G 
transformation. Under the transformations (A2), the scalar fields 4 a  (x )  transform as 

('43) 4" + 41" = 4 a  - q K - l  A 

h ( 4 ,  g ) =  l - iqSAaA"(4)Tm.  (A41 

E 

Correspondingly, h(  4, g) is represented in the following form: 

The vectors LAa ( 4 )  are Killing vectors. aAa( 4 )  are called H compensators. Substitut- 
ing (A2)-(A4) into (Al) ,  one can find that 

844)  = v ( 4 ' )  - 4 4 )  
= - q K  - ' E A L A U  ( 4 )  = i q& A ( - TAU ( 4 )  + ( 4 ) a , "  ( 4 )  ) (A51 
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where LA = L A " ( + ) a , ,  and a, = ; /a+"  is the left derivative with respect to 4,. From 
( g l g 2 ) u ( 4 )  = g , ( g 2 u ( 4 ) ) ,  we obtain the following relations: 

L A R B Y  - ( - l ) A B L B n A Y  = K [ f A B C n C y +  ( - l ) " B f l A " a , p f p m y ]  (A61 

[ L A ,  I = K ~ A B ' L ~  ('47) 

T A  9 T B  1 = i fABc TC (A81 

where we have used (A5) and the supercommutation relation 

In terms of the left derivative, the 1-form on G/H,  which is related to e , ( + )  in 

4 4 )  = e A ( + ) T A  = (1/iK)4+)-1du(+) d d+"a, = dx,'a,. (A9) 
(2.3) by e( 4) = d x p e , (  +), is defined by 

For the components, this equation is expressed as 

The e : ' ) ( + )  and e&,"(+) are called vielbeins and H connections respectively?. By 
multiplying L A a ( 4 )  with (A10) and using (A5), we obtain the following relations: 

e b  ( 4 ) = ebDl ( 4 ) T e  + eb( " ( 4 = ( 1 / i K  ( 4 ) - a b o  ( 4 * ('410) 

L A , ( + )  e /  (4)  = O A P  ( ~ ( 4 ) - ' )  - RAP (4) ( A l l )  
L A a  ( 4 e a ( b ) (  4 ) = DAb ( U( 4 I-') ( A W  

gTAg-' = D A B ( g )  T B  g E G .  (A13) 

where the matrix DAB is the adjoint representation of G defined by 

References 

[l]  Ne'eman Y 1979 Pbys. Lett. 81B 190 
Fairlie D B 1979 Pbys. Lett. 82B 97 
Squires E J 1979 Pbys. Lett. 82B 395 
Taylor J G 1979 Pbys. Lett. 83B 331 
Dondi P H and Jarvis P D 1979 Pbys. Lett. 84B 7 5  

[2] Ne'eman Y and Thierry-Mieg J 1979 Differential Geometrical Methods in Mathematical Physics (Lecture 
Notes in Mathematics 836) ed P L Garcia, A Perez-Rendon and J M Souriau (Berlin: Springer) p 318 

[3] Ne'eman Y and Thierry-Mieg J 1980 Proc. Natl Acad. Sci. U S A  77 720 
141 Taylor J G 1980 J. Pbys. A :  Math. Gen. 13 1861 
[5] Ne'eman Y and Thierry-Mieg J 1982 Nuovo Cimento A 71 104 
[6] Thierry-Mieg J and Ne'eman Y 1982 Proc. Nail Acad. Sci. USA 79 7068 
[7] Taylor J G 1979 Pbys. Rev. Lett. 43 824 
[8] Dondi P H and Jarvis P D 1980 Z. Pbys. C 4 201 
[9] Ne'eman Y and Sternberg S 1980 Proc. Natl Acad. Sci. USA 77 3127 

[ 101 Ne'eman Y and Thierry-Mieg J 1982 Pbys. Lett. 108B 399 
[ l l ]  Ecclestone R 1980 J. Pbys. A :  Math. Gen. 13 1395; 1982 Pbys. Lett. 116B 21 
[12] Taylor J G 1979 Pbys. Lett. 84B 79 

[13] Julia B and Luciani J F 1980 Pbys. Lett. 90B 270 
[14] Cahill K 1978 Pbys. Rev. D 18 2930; 1979 Pbys. Rev. D 20 2636 

Pickup C D and Taylor J G 1980 J. Pbys. A :  Math. Gen. 13 1537 

Kim J E and Zee A 1980 Pbys. Rev. D 21 1939 
Hull C M 1984 Pbys. Leu. 142B 39 

Salam A and Strathdee J 1969 Pbys. Rev. 184 1750 
[15] Coleman S, Wess J and Zumino B 1969 Pbys. Rev. 177 2239 

[ 161 Cremmer E 1983 Supersymmetry and Supergrauity '82 ed S Ferrara, J G Taylor and Pvan Nieuwenhuizen 
(Singapore: World Scientific) p 153 

t When we need to distinguish the indices of the local frame basis from the indices of the coordinate basis, 
we shall write the former with parentheses. 



240 S Deguchi 

[17] van Nieuwenhuizen P 1984 Supersymmetry and Supergravity '84 ed B de Wit, P Fayet and P van 

[18] DeWitt B 1984 Supermanifolds (Cambridge: Cambridge University Press) 
[19] Kunimasa T and Goto T 1967 Prog. Theor. Phys. 37 452 

Nieuwenhuizen (Singapore: World Scientific) p 239 

Slavnov A A, and Faddeev L D 1970 Theor. Math. Phys. 3 312 
Shizuya K 1975 Nucl. Phys. B 87 255, B 94 260; 1977 Nucl. Phys. B 121 125 
Fukuda T, Monda M, Takeda M and Yokoyama K 1981 Prog. Theor. Phys. 66 1827; 1982 Prog. Theor. 

Phys. 67 1206; 1983 Prog. Theor. Phys. 70 284 
[20] Ne'eman Y 1986 Phys. Lett. 18lB 308 
[21] Bars I 1984 Introduction to Supersymmetry in Partick and Nuclear Physics ed 0 Castahos, A Frank and 

L Urrutia (New York: Plenum) p 107 


